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Motivation and Aims

Given a dataset D, we are interested only in a portion of the information it contains:

D,D,E € R"*™

D [xi, tx] = D[xi, t] + E[xi, k]

Dataset Information Something Else

Where Xj and tk are the spatial and the temporal resolutions
20

w(z,y,0.00)

Example 1:

Numerical Simulation of the 2D
vorticity-streamline equation

Where are the dominant sources of
vorticity?

How do they evolve in time and how
do they interact?

Mendez et al, ICNAAM 2017
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Motivation and Aims

Given a dataset D, we are interested only in a portion of the information it contains:

D,D,E € R"*™

D [xi, tx] = D[xi, t] + E[xi, k]
Dataset Information Something Else

Where Xj and tk are the spatial and the temporal resolutions

Example 2:

TR-PIV of an Oscillating Gas Jet
Impinging on a Pulsing Interface

A ]
$eesssevsesssseseie

What are the flow structures
associated with the pulsation of the
interface?

e,
o,
s e
e
he

What are those linked to the jet
oscillation?
Mendez et al, Exp Therm Fluid Sci 2017
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What is a Decomposition ? 3/51

Decomposing means ‘to break down’ into constituent simpler parts, e.g.:

D [xi, tk] = Di[xi, tg] + Do[xi, tk] + D3[xi, te] - - - + Dr[xi, tk]

Dataset Information Something Else

Each of part has its own spatial and temporal evolution, and it is referred to as mode.
We search for modes that can be written in a variable separated and normalized form:

Spatial structure Energy Contribution
ne n¢ /
D [xia tk] = E Sr [Xi] T,- [fk] = Z O-er’r [Xi] "uy"r‘ [tk]
r=1 r=1
Temporal Evolution Unitary energy structures/evolutions

The most common decomposition is the Time-Discrete Fourier Transform (TDFT) where the
temporal evolution of each mode is assumed to be harmonic:

(k—1)(n—1) ., —

—27i

Ynlk] = e nt

d e |: n n 1}
ne|l——,-—
an 2°9

In order to have a frequency span Jn = [_%1 %]
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The Algebra of any Decomposition 4/51

It is now useful to see a discrete decomposition from an algebraic point of view.
At the scope assume we organize each snapshot into a column vector and we do the same

for the spatial and the temporal structure of each mode:

D [i k‘] _ -dl [xi] dy [Xi] oo dy [Xi] Data Matrix c R™s X1t
®[i,r] = 2 {Xi] 2 ['Xi] ' © On [Xi] Spatial Structures € C"s*"
) O1 e 0
Energy Contribution € R™™" X [r,r] =
0o ... o,

) ikl wolk]l ... Ynlk
Temporal Evolutions & C™m>x" v [k’,T'] = ZH,[ ] 2_[ ] . [ ]
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The Algebra of any Decomposition 5/51

All the decomposition will therefore be written via matrix multiplication:
n
— — * Eq1l
D[Xz’atk] - E Or ¢r[xi] wr[tk] =oXV a
r=1

To close the problem, one must set constraints in the spatial or in the temporal bases.

| Inferred (Unsupervised)

Pre-Defined (Supervised) }

. Proper Orthogonal
. Analytlca.l Decomposition (POD)
(Eigen-Functions) ‘ad hoc’
Fourier exponentials Fourier exponentials Dynamic Mode
Legendre Polynomials Wavelets Decomposition (DMD)
Chebyshev Polynomials
Bessel Functions Spectral Proper
Orthogonal

\Decomposition (SPODu
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The fundamental Classes 6/51

Dl ts] = 3 0y duloc] rlta] = 25U a1

r=1
Energy Based: POD | | Frequency Based: DMD | I Mixed: SPOD
(Lumley,1967) (Schmidt, Rowley, 2009) (M Sieber, 2015)
Goal: Goal: Goal:
Minimize the number of Harmonic Modes Mixing 1 and 2

mode required
Advantage: Advantage:
g Advantage: gSpectral separation Good blending
Energy Optimality between POD/DFT
Pitfalls: Pitfalls: Pitfalls:
Possible Spectral Mixing g Poor convergence, g Possible poor

possible finite blow-ups convergence and
lost of data inference

X
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The fundamental Classes: POD 7/51

Dl ts] = 3 0y éuloc] rlta] = 25U a3
r=1

Energy Based: POD |

We assume that both spatial and temporal dependencies form an orthonormal set.

For a real dataset, orthonormality reads dTdp =0Ty =1

Therefore these bases are the set of
eigenvectors of the covariance matrices,
and the associated energies are the square

roots of the corresponding eigenvectors C =DDT = @E(\I/T‘I/) ol — 27

K=DTD= \pz(qﬂ"@) 2ol = un2g”

The POD decomposition in Eq 1 becomes simply the Singular Value Decomposition (SVD) of
the dataset D. The energy optimality is guaranteed by the Eckart-Young theorem.

PROBLEM: Eigenvectors are unique up to repeated singular
values

Z@i\%‘von KARMAN INSTITUTE
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The fundamental Classes: DFT/DMD 8/51
nt
D[Xia tk] = Z Or ¢’r‘ [Xz] djr[tk] =oXU” Eq 1
r=1
| Frequency Based: DMD |
As for the DFT, the DMD the temporal basis has a Vandermonde form:
1 1 1 1 Hy, _
1 |1 w w? w—b W =1
U= X = oxvuH
V1 : .
1 L U,Z(nt—l) w(r—l)(n,—l) LX U = oY)
DFT. ¥ =F DMD: ¥ =2
powers of a real, fundamental frequency Complex frequencies of the system
Jo=1/T =n;/At . w; = exp( iw,-At)
w = exp(iwaoAt) = exp( 2%1) with
iel,r—1] w; € C
S von KARMAN INSTITUTE
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The fundamental Classes: DFT/DMD 9/51

Dl ts] = 3 0y éuloc] rlta] = 25U a3
r=1

| Frequency Based: DMD |

The DMD assumes that it is possible to describe the data as a linear dynamical system, then

each realization can be obtained from the previous via matrix multiplication with a
propagator:

dps1 = Pdy, = P*d; = ®A*® 14,

With the complex eigenvalues controlling the evolution of each mode

: tr
i = exp(iw;) — )\ﬁ-" = exp (iwiA—kt>

DMD aims at building an approximated propagator from the dataset.

Note: provided that the imaginary part of the frequency is zero, DMD converges towards a
DFT (See Mezic et al 2005, Rowley et al 2009, Chen et al 2012)

N4
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The fundamental Classes: DFT/DMD 9/51

Dlxi,tx] = Y 0v dolxi] 1, [th] = DX T*  Eal
r=1
| Frequency Based: DFT/DMD |

The standard algorithm (Schmid, 2010) is organized in three steps:

1) Rearrange the dataset D1 = Dldy,...dn, 1]

introducing P Dy, = D[dg d ] —> D2.m = PDl,m—l

st bl e

2) Project P onto the POD - ~

modes of the dataset to Do, =PUSV' —» UTDQ_,,,VS_1 =UTpu=pP
obtained an approximate P

3) Compute the P = QAQ_l —> P = UQ
eigenfrequencies from the

approximated P Given the spatial structures and the temporal modes, the

amplitudes can be easily recovered (see Schmid, 2010)

PROBLEM(s)
At best (DMD approaching DFT), the convergence is poor.
?,';";‘}_T,TDAM:,TV:,?JE At worst (bad conditioning of P), the DMD does not converge

The fundamental Classes: SPOD 10/51

Dx;, ty] = Et: Op Gr[Xi] Yp[ty] = X U*  Eal
r=1

| Mixed: SPOD

The SPOD (Sieber, 2016) modifies the eigenvalue problem in the computation of the POD
by filtering the covariance matrix along the diagonals.
The idea is that harmonic modes in the POD arise when the covariance matrix K is close to

a Toepliz Circulant Matrix.
P The 1D low pass filter acting

Along the diagonals forces this covariance pattern
- T
K=D"D filter’s impulse response

\ Z K
AN

Then, the algorlthm is a standard POD:
K=0u32y! —» ®d=DUx!

Invasive treatment of the correlation matrix and

b PROBLEM(s loss of orthogonality: who is the new K? what is

| —Z»=__von KARMAN INSTITUTE : 5
R\@%— FOR FLUID DYNAMICS the good filter strength?

27-10-17



27-10-17

Table of Contents

1. Motivation and Aims
2. Classification and Algebra of Decompositions

3. Synthetic Test Cases

4. The Multiscale Proper Orthogonal Decomposition
4.1 Fourier Spectra and Eigenvalue Spectra
4.2 Multiresolution via Discrete Wavelets

4.3 The Gram-Schmidt Re-Assembly
5. Numerical and Experimental Test Cases

6. Conclusions

Synthetic Test of the POD Limit 11/51

2
D(z,t) = ZA,- exp

i=1

Az =0.15 At =0.01 03

-0.05 3

20’2 .05 3

De R(256X256) X512

0 1 2 3 4 5 6

i
Test 1: Distinguishable energies

15 10 5 0 5 10 15 [ 3A1||T1||:A2||T2”]
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Synthetic Test of the POD Limit 12/51
K=DTD
15000 ,
Distinguishable
10000 1 energy contributions
S
5000 {
ol 1
10° 10! 107 10°
-

t[s]
Note for SPOD: This matrix is far from a
Toepliz Circulant Matrix...!

__f‘@%_von KARMAN INSTITUTE
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Synthetic Test of the POD Limit 13/51
0.15 () (t)

0.1
0.05

5

P1(x) .
-5 -0.05
-0.1

-0.15 T T T

¢2(X) - . 04

=
—
15

-20 -10

von KARMAN INSTITUTE
FOR FLUID DYNAMICS

8
o
[
o
w0 ]
'~y
5
=Y

@
2 Modes out of 512, 0% error, perfect identification! M
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Synthetic Test of the POD Limit 14/51
) o1 T1 = sin(4mty)
_ i0
D(x,t) = ;A exp(72 )T(t) o
Az =0.15 At=0.01 0
D  R(256x256)x512 005
e 1 2 3 1 5 6
i
Ty = sin(30m ) exp[ (te — )20]
0.2
0.4 . . . . g y
0 1 2 3 4 5 6
i
Test 2: Equal energies
-20
20 -15 -10 -5 0 5 10 15 —
f@\ von KARMAN INSTITUZE [ Al l |T1 ” A2| |T2 ” J
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Synthetic Test of the POD Limit 15/51
K=D'D
1800
16004 o Equal Energy Content
1400 - )
— SVD not unique!
_ 1000
© 800
600
400
200
0 .
10° 10! 10 10
T

We still have perfect reconstruction, but...
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Synthetic Test of the POD Limit 16/51

0.15 7;[)1 (t)

0.1
0.05

P1(x) .
-5 -0.05
-0.1
-0.15 T

da(t)

0.1
0.05

-0.05
-0.1
-0.15 T

(=}
—
%)
o o
'S
(=)
(=}

N\

t_;]*E von KARMAN INSTITUTE Spectral Mixing between the two modes ! g

Limits of the DMD 17/51

DMD Limitations

The main problem of the standard DMD is the rank of the original data.
In this example, only POD modes are used to build the approximate projector, which is
therefore of size 2 x 2 .

Dyn, =PUSV'— UTD,, VS =UTPU=P

The eigenvalues of the approximated matrix are real and leads to a strong decay

Eigenvalues

2.5 2.5

2 2
15 ¢ 1 (t) 15

1 1
0.5

0 T

0 1 2 3 4 5
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Limits of the DMD 17/51

DMD Limitations

The main problem of the standard DMD is the rank of the original data.
In this example, only POD modes are used to build the approximate projector, which is
therefore of size 2 x 2 .

Dyn, =PUSV'— UTD,, VS '=UTPU=P

The eigenvalues of the approximated matrix are real and leads to a strong decay

Eigenvalues
15 2.5
5 1.5
a0

-15 ¢1 ("E ) y)
20
20 10 0 10
on KARMAN INSTITUTE £
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Limits of the SPOD 18/51

We consider two different sizes of the low pass filter along the diagonals

350 Filter size
100
. I NN . np =128
Increasing the filter side 200 \ 250
forces the covariance matrix = & 200
. . 300
towards a Toepliz matrix: 150
the decomposition 100
approaches the DFT (and 50
. L | 0 IEEEI
inherits its problems!). " 0! o "
.
Obs: that the modes comes 500 Filter size
automatically paired 250 -
o ngp = 256
= & 150
100
. HWM
j]% von KARMAN INSTITUTE 100 200 300 400 500 10° 10! 10% 10*
== t[s] r
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SPOD with Filter Size 128

19/51

Sufficiently smooth
dynamics are captured
with no errors, although
every each modes
appears more and more
in pairs as the filter width
is increased.

Faster (sharper) evolution
requires more and more
modes as the
decomposition
approaches the DFT.

The improvements with
respect to simple POD are
evident (1 mode is
correctly extracted)

on KARMAN INSTITUTE
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0.1

0.05

=

-0.05

-0.1

0.15
0.1
0.05

-0.05

-0.1

-0.15

0.15
0.1
0.05

-0.05

-0.1

-0.15

3
t[s]

3
tls]

3
tls]

SPOD with Filter Size 256

20/51

Sufficiently smooth
dynamics are captured
with no errors, although
every each modes
appears more and more
in pairs as the filter width
is increased.

Faster (sharper) evolution
requires more and more
modes as the
decomposition
approaches the DFT.

The improvements with
respect to simple POD are
evident (1 mode is
correctly extracted)
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0.1

0.05

=

-0.05

-0.1

0.15
0.1
0.05

-0.05

-0.1

-0.15

0.1

0.05

-0.05

-0.1

3
t[s]

3
t[s]

3
t[s]
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A new Decomposition: Motivation 21/51
D[x;, ti] = Z 07 rlxi] e [ta] = DT
Energy Based: POD | | Frequency Based: DFT/DMD | | Mixed: SPOD |
Orthogonality of the Limit Frequency Bandwith but Use filters on K. but
temporal modes, to be not necessarely harmonics. allow for erf:ect
linked to K Avoid at any step operations in p
. . reconstruction of K.
the Fourier Domain
The multiscale Proper Orthogonal Decomposition (mPOD)
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Filtering and Eigenvector’s Spectra 22/51

It is convenient to consider the spectra of a vector (1D) as the projection onto the
Fourier Basis, thus as a matrix multiplication

. (k—1)(n—1)

1 S S _
.f:[k]:—z.r[n]ezj nt x:FTxZF*:U:FZU

Similarly, the spectra of a matrix such as K can be written as two multiplications:

L ((k71>(i71)+(171><171))

1 = & 353" ki g

i=1 j=1 Transform of the rows

nt ng
) 727” (k— 1(J 1) ﬂ.j(k—l)(l—l)
K Kli, "t
= g 57 3y

~

K. Transform of the columns

Since transforming over the rows= transforming over the columns of the transpose

=l von KARMAN INSTITUTE K = KCF* = F*KF = FKF

~ FOR FLUID DYNAMICS
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Filtering and Eigenvector’s Spectra 23/51

ng
Introducing the eigenvalue decomposition K = Z /\,.fzprq/;f = UAUT
r=1

K =FUKF = (FEO)A (UTF) = WA DT

Key observation
The Fourier spectrum of the correlation matrix is symmetric and is the sum of outer
products of its eigenvector's spectra.

!

Implication:
If a filter removes a certain frequency from the spectra of K, this frequency is
automatically removed from all its eigenvectors!

Perfect Separation Case 24/51

K=DTD

Consider the correlation
spectra of the synthetic
test case and the
temporal evolution of
its first POD mode

'
&
=
o

on KARMAN INSTITUTE
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Spectral Box (Low Frequency) 25/51

Using an almost ideal low
pass filter (to be discussed)
we extract a suitable large
scale pattern (first spectral

box)

Any higher frequency
content removed from the
correlation spectra
disappears from the

eigenvectors -
s
=
-0.05
-0.1 4 T T T T T 1
0 1 2 3 4 5 6
il
_von KARMAN INSTITUTE
FOR FLUID DYNAMICS
Spectral Frame (High Frequency) 26/51

K=D"D

Using an almost ideal high
pass filter (to be discussed)
we extract a suitable fine
scale pattern (first spectral
frame)

Any lower frequency
content removed from the
correlation spectra
disappears from the

eigenvectors 0.1
005
Obs: this filterisnot < o
o S
working in the frequency -0.05
domain 0.1
-0.15 : : T : . |
0 1 2 3 4 5 6
t[s]
von KARMAN INSTITUTE . .
FOR FLUID DYNAMICS In what domain should the filter act?
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A Multiresolution view of K 27/51
Ke, I
Decompose the correlation —
K=K K K Kaje s om = K K
matrix K into the contribution of \M+ H TR, ot ; i
different scales. Key -
Kry
Each scale is equipped with its KHL,1
own POD, to be reassembled K
based on energy criteria
KEL—1 *[

= (k- 1)At[s]

pos{E e }s]

7
Scale |

tk] = (k — 1)At[s] 4 10

Mendez et al, Exp Therm Fluid Sci 2017
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Fundamentals of 2D DWT 28/51

The correlation matrix at each scale is obtained as a linear combination of shifted basis
elements called scaling functions, placed at non overlapping locations. The possible shifts
depends on the scale. The approximation terms, for instance, read

Possible shifts at scale | @ Scaling Coefficients
Scaling functions
Kﬁl [l J] n CS I[NL TL]S[ m.n [Z ]]
t m=0 n=0
For the last three scales, for instance, the scale functions are placed as follow
Scale 0 Scale 1 Scale 2
52,0,0 $2,2,0

51,0,0 51,1,0

$2.3,1
50,0,0
52,1,3

$1,0,1 31,11

8244

_von KARMAN INSTITUTE
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Fundamentals of 2D DWT 29/51

The reasoning for the fine scale part (detail) is analogous, expect that it contains three sets
of basis elements called wavelets, on for each kind of details:

vhdzl 12—

Ky, [i, 7] 2{: 2{: 2{: A L Y L G

m=0 n=0

The coefficients in both cases can be computed by standard projection of the matrix onto
the set of bases of m,n = [0,1,...2" — 1] scaling or wavelet functions.

The computation of the coefficients 1 L

is the Discrete Wavelet Transform Cs.l ['m7 n] = Z Z [{ (5 ] Sl,m,n [l ]]
(DWT); ’1—1] 1

The projection of the matrix e

onto the coefficients is the Cf;, [7ns 71] = Z Z K [Z J w[ T, n[l .7]

Inverse Discrete Wavelet i=1 j=1
Transform (DWT)
What are the scaling functions and the

_von KARMAN INSTITUTE wavelet at each scale ?
FOR FLUID DYNAMICS
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2D Wavelets and Scaling Functions 30/51

At each scale, wavelet and scaling functions are synthesized by a mother function via the
dilatation equation (Mallat, 1989):

317m7n[i,j] = 9l/2g [212' — 2Ly, 21]' — 2L—ln} Father Wavelet
wlvmh Z[Z 9 = 2L/ 2qyvihd [212' — 2Lty 2l — 2L—’n] Mother Wavelet(s)

Each of the 2D basis element is constructed as outer product of a 1D element

Sk,m n[i ]] = Skm[i] 2 Skn[]] sli,
wk malts 3] = 8k.mli] © i n[7]

Wi nlis 3] = Wem[i] ® nlJ]

W m,nlis 5] = Wemli] @ winlJ]

Obs: By construction, each element in the scale

(approximation or full detail) is symmetric and thus we

keep the symmetry of the original matrix. j ;
ey Exemplary scaling function

9& von KARMAN INSTITUTE
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The Final Reassembly

31/51

POD

Correlation Eigenvalue Projection
Matrix Problem

Mulstiscale POD

POD Modes

1 Kf’o_) KLO = \IJEOAEO‘IIEQ_)

_ T
ool el T T

g5 >
| KHI_)KHl = \IJ'HlAHl\IlHl
Correlation

Matri _ e
atrix — K’Hz_) K’H2 = ‘IJ'HQAH2\IIH2_)

Multi-Resolution Eigenvalue

== von KARMAN INSTITUTE  Analysis ProblemsS
(= FORFLUID DYNAMICS

/ ProjectionS \

Incomplete Separation: Example

32/51

Consider the MRA decomposition of the following symmetric matrix:
K=D'D A

The pattern
features high and
low frequency
content with a

strong ‘1D’
frequency
0.1
Both frequencies 0.05
appear in the dominant = o
. =
eigenvector -0.05
-0.1
on KARMAN INSTITUTE 015 % T T T T T 1
OR FLUID DYNAMICS 0 50 100 150 200 250 300

t[s]
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Incomplete Separation: Example

33/51

The first spectral box (large scale) yields

-0.5
-0.4
-0.3
-0.2
-0.1

The low pass filter
removes any
higher frequency
in the spectra

0.1
...and so on its .
eigenvectors Z ’ .
0.05
= von KARMAN INSTITUTE 014 . : . . : .
FOR FLUID DYNAMICS 0 50 100 tl[ﬁs? 200 250 300
Incomplete Separation: Example 34/51

The relevant spectral frame (finer scale) yields

50 100 150 200 250

The high pass filter
removes only 2D
frequencies low, but
leaves the ‘single
directional’ ones

This is in line with the
wavelet basis used

0.15
0.1
As a result, the low
. 0.05
frequency contentis = 5
not removed fromits = 005
eigevectors -
0.1
von KARMAN INSTITUTE -0.15 4 T T
FOR FLUID DYNAMICS 0 50 100

. : : )
150 200 250 300
t[s]
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The Gram-Schmidt Process: Example 35/51

(UM, s V)
Wb — I vl Sk
0.15 I}/JMQ le <ul)./\/11 ? ’ll/)./\/tl>

,'vDJ\/( 1

I

-0.05 0
-0.1

-0.15 4 +
0 50 100 150

tls]

100 150 200 250 300
tls]

0 50 100 150 200 250 300

tls]

Spectral separation without

o Fourier problems
l‘l 50 100 150 200 250 300
_von KARMAN INSTITUTE sl

OR FLUID DYNAMICS

The Final Step 36/51

Given the set of non-zero (or above tolerance) singular value at each scale

diag (z,cm ) diag (Zu,,,‘ ) diag (ZH,,L_I )

| Tee (Ttee

. T
Tﬁm, T"Hom Hm-1

Assembly the matrix of multiscale temporal modes starting from the large scale ones
0 _ m Lo m Hom Hm 1 Hom—i
W, = [whm .yl e gl g

And re-orth lize t —
nd re-orthonormalize to \119\4 :\IJM R—>\I’M :\I].(/]\/l R 1

compute the temporal modes

Project and reorder for the spatial structures D \IJM — Q)M EM
=l

@¥ von KARMAN INSTITUTE
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We consider the Vorticity-Streamline formulation of the Incompressible NS

w:v2§ u=§& w==E&

i i
Wt = év2w —+ fywx — fxwy

Solution Method (N. Kutz, 2013): Finite Differences with fast Poisson solver for the
Laplacian and Runge Kutta (RK4) integration in time.

ns = 256 x 256

X = F(X,1)

X(0) =X, —>

X = (wa g)T X(—L,y,t) = X(L’ ywt)
X(z,—L,t) = X(x, L,t)

Mendez et al, 2017
Multiscale Proper Orthogonal
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Set of Coherent Sources 38/51

T [t]

m

Mz 2]

Tst]

Tyt
=ls -1
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POD Results 40/51
The correlation patter shows the footprint
of different scales and events:
1) Impulsive event
2) Periodic regular pattern
3) Localization of sources
4) Strong uncorrelation
05 X107
2 0 5 10 15 20
i
. . The energy distribution has a gentle drop due to the
1 complexity of the test case. Yet, the first 20 modes carries
% more than 90% of the energy
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POD Modes
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mPOD Modes

The reordered mPOD modes
achieve a much cleaner
separation and tracking of the
different sources

The energy convergence is
comparable to the (optimal) one of

standard POD

0
10
10° 10! 10

Experimental Test Case 46/51
Slider Frequency 0.1-2 Hz
Acquisition Freq: 3 kHz
Nozzle _ Jet Speed: 20-40 m/s
Fixed Scaling Factor: 22 pixels/mm
Plate Dx=0.36 mm™?!
a’: N
'] »
] 3
2D Oscillatory ) 3
Confinement Slider
Mendez et al, 2017
Multiscale Modal Analysis of an Oscillating
Impinging Gas Jet, Exp Th Fluid Sci
mpinging as Jet, Exp Therm Fig 5t POD for Image Pre-Processing and Adaptive Masking
. Mendez et al, Exp Therm Fluid Sci, 80:181-192
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POD Modes in Quasi Steady Test 47/51
oufi, J] Re = 3400 (34m/s) F=0.1 Hz
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mPOD Modes in Quasi Steady Test 48/51
Re = 3400 (34m/s) o] F=0.1 Hz
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Two mechanisms at largely different scales are identified: the formation of a large scale
vortex below the jet, which promotes a downward deflection and the flapping of the
impinging jet due to entrainment unbalances

Large Scale Dynamics Fine Scale Dynamics

Y O L o, J 9T k]

y[mm]
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mPOD Modes Reconstruction 49/51

Scales Correlation 50/51

Large Scale Mode Evolution Fine Scale Versus Large Scale
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mPOD Modes Dynamic cases 51/51
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Conclusions

D [xi,tx] = D1[xi, tk) + Da[xi, tx] + Ds[xi, t] - - - + Dr[xi, tk)

Dataset Information Something Else
nt
Dxi, te] = Y 07 r[xi] Gy [ta] = DT U
r=1
| Energy Based: POD | | Frequency Based: DFT/DMD | | Mixed: SPOD
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2D Oscillatory
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