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Motivation and Aims

Example 1: 

Numerical Simulation of the 2D
vorticity-streamline equation 

Where are the dominant sources of 
vorticity? 

How do they evolve in time and how 
do they interact?

1/51

Mendez et al, ICNAAM 2017

Where         and          are the spatial and the temporal resolutions

Given a dataset D, we are interested only in a portion of the information it contains: 

Dataset Information Something Else

Motivation and Aims 2/51

Given a dataset D, we are interested only in a portion of the information it contains: 

Dataset Information Something Else

Example 2: 

TR-PIV of an Oscillating Gas Jet 
Impinging on a Pulsing Interface

What are the flow structures 
associated with the pulsation of the 

interface? 

What are those linked to the jet 
oscillation?

Mendez et al, Exp Therm Fluid Sci 2017

Where         and          are the spatial and the temporal resolutions
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Decomposing means ‘to break down’ into constituent simpler parts, e.g.:

Each of part has its own spatial and temporal evolution, and it is referred to as mode.

What is a Decomposition ?

Dataset Information Something Else

We search for modes that can be written in a variable separated and normalized form:

with

Unitary energy structures/evolutions

Energy Contribution

The most common decomposition is the Time-Discrete Fourier Transform (TDFT) where the 
temporal evolution of each mode is assumed to be harmonic:

Spatial structure

Temporal Evolution

and

In order to have a frequency span

3/51
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The Algebra of any Decomposition 

It is now useful to see a discrete decomposition from an algebraic point of view.
At the scope assume we organize each snapshot into a column vector and we do the same 
for the spatial and the temporal structure of each mode:

Data Matrix

Spatial Structures

Energy Contribution

Temporal Evolutions

4/51

Fourier exponentials
Wavelets 

The Algebra of any Decomposition 
All the decomposition will therefore be written via matrix multiplication:

To close the problem, one must set constraints in the spatial or in the temporal bases.

Pre-Defined (Supervised)
Proper Orthogonal 

Decomposition (POD)

Dynamic Mode 
Decomposition (DMD)

Spectral Proper 
Orthogonal 

Decomposition (SPOD)

Analytical 
(Eigen-Functions) ‘ad hoc’

Fourier exponentials
Legendre Polynomials

Chebyshev Polynomials
Bessel Functions

Inferred (Unsupervised)

Eq 1

5/51
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The fundamental Classes

Energy Based: POD Frequency Based: DMD Mixed: SPOD

Goal: 
Minimize the number of 

mode required

Advantage: 
Energy Optimality

Pitfalls:
Possible Spectral Mixing

(Lumley,1967)

Goal: 
Harmonic Modes

Advantage: 
Spectral separation

Pitfalls:
Poor convergence, 

possible finite blow-ups

(Schmidt, Rowley, 2009) (M Sieber, 2015)

Goal: 
Mixing 1 and 2

Advantage: 
Good blending

between POD/DFT

Pitfalls:
Possible poor 

convergence and
lost of data inference

Eq 1

6/51

The fundamental Classes: POD

We assume that both spatial and temporal dependencies form an orthonormal set.

Eq 1

Therefore these bases are the set of 
eigenvectors of the covariance matrices, 

and the associated energies are the square 
roots of the corresponding eigenvectors

For a real dataset, orthonormality reads

The POD decomposition in Eq 1 becomes simply the Singular Value Decomposition (SVD) of 
the dataset D. The energy optimality is guaranteed by the Eckart-Young theorem.

Energy Based: POD

PROBLEM: Eigenvectors are unique up to repeated singular 
values

7/51
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The fundamental Classes: DFT/DMD

Eq 1

As for the DFT, the DMD the temporal basis has a Vandermonde form: 

powers of a real, fundamental frequency

DFT: DMD: 
Complex frequencies of the system

with

Frequency Based: DMD

8/51

The fundamental Classes: DFT/DMD

Eq 1

Frequency Based: DMD

The DMD assumes that it is possible to describe the data as a linear dynamical system, then 
each realization can be obtained from the previous via matrix multiplication with a 
propagator:

With the complex eigenvalues controlling the evolution of each mode

DMD aims at building an approximated propagator from the dataset.
Note:  provided that the imaginary part of the frequency is zero, DMD converges towards a 
DFT (See Mezic et al 2005, Rowley et al  2009, Chen et al 2012)

9/51
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The fundamental Classes: DFT/DMD

Eq 1

Frequency Based: DFT/DMD

The standard algorithm (Schmid, 2010) is organized in three steps:

1) Rearrange the dataset
introducing P

2) Project P onto the POD 
modes of the dataset to 

obtained an approximate P

3) Compute the 
eigenfrequencies from the 

approximated P Given the spatial structures and the temporal modes, the 
amplitudes can be easily recovered (see Schmid, 2010)

At best (DMD approaching DFT), the convergence is poor.
At worst (bad conditioning of P), the DMD does not converge 

PROBLEM(s)

9/51

The fundamental Classes: SPOD

Eq 1

The SPOD (Sieber, 2016) modifies the eigenvalue problem in the computation of the POD 
by filtering the covariance matrix along the diagonals.
The idea is that harmonic modes in the POD arise when the covariance matrix K is close to 
a Toepliz Circulant Matrix.

Mixed: SPOD

filter’s impulse response

The 1D low pass filter acting
Along the diagonals forces this covariance pattern

Then, the algorithm is a standard POD:

Invasive treatment of the correlation matrix and 
loss of orthogonality: who is the new K? what is 
the good filter strength?

PROBLEM(s)

10/51
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Test 1: Distinguishable energies 
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Synthetic Test of the POD Limit

Note for SPOD: This matrix is far from a 
Toepliz Circulant Matrix…!

Distinguishable 
energy contributions

12/51

Synthetic Test of the POD Limit

2 Modes out of 512, 0% error, perfect identification!

13/51
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Synthetic Test of the POD Limit

Test 2: Equal energies 

14/51

Synthetic Test of the POD Limit

Equal Energy Content
=

SVD not unique!

We still have perfect reconstruction, but…

15/51
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Synthetic Test of the POD Limit

Spectral Mixing between the two modes !

16/51

Limits of the DMD

The main problem of the standard DMD is the rank of the original data.
In this example, only POD modes are used to build the approximate projector, which is 
therefore of size 2 x 2 . 

DMD Limitations 

The eigenvalues of the approximated matrix are real and leads to a strong decay

17/51
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Limits of the DMD

The main problem of the standard DMD is the rank of the original data.
In this example, only POD modes are used to build the approximate projector, which is 
therefore of size 2 x 2 . 

DMD Limitations 

The eigenvalues of the approximated matrix are real and leads to a strong decay

17/51

Limits of the SPOD

We consider two different sizes of the low pass filter along the diagonals

Filter size

Filter size

Increasing the filter side 
forces the covariance matrix 

towards a Toepliz matrix: 
the decomposition 

approaches the DFT (and 
inherits its problems!).

Obs: that the modes comes 
automatically paired

18/51
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SPOD with Filter Size 128

Sufficiently smooth 
dynamics are captured 

with no errors, although 
every each modes 

appears more and more 
in pairs as the filter width 

is increased.

Faster (sharper) evolution 
requires more and more 

modes as the 
decomposition 

approaches the DFT.

The improvements with 
respect to simple POD are 

evident (1 mode is 
correctly extracted)

19/51

SPOD with Filter Size 256

Sufficiently smooth 
dynamics are captured 

with no errors, although 
every each modes 

appears more and more 
in pairs as the filter width 

is increased.

Faster (sharper) evolution 
requires more and more 

modes as the 
decomposition 

approaches the DFT.

The improvements with 
respect to simple POD are 

evident (1 mode is 
correctly extracted)

20/51
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A new Decomposition: Motivation

Energy Based: POD

Orthogonality of the 
temporal modes, to be 

linked to K

Frequency Based: DFT/DMD

Limit Frequency Bandwith but 
not necessarely harmonics. 

Avoid at any step operations in 
the Fourier Domain

Mixed: SPOD

Use filters on K, but 
allow for perfect 

reconstruction of K.

The multiscale Proper Orthogonal Decomposition (mPOD)

21/51
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Filtering and Eigenvector’s Spectra

It is convenient to consider the spectra of a vector (1D) as the projection onto the 
Fourier Basis, thus as a matrix multiplication 

Similarly, the spectra of a matrix such as K can be written as two multiplications:

Transform of the columns

Transform of the rows

Since transforming over the rows= transforming over the columns of the transpose

22/51
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Filtering and Eigenvector’s Spectra

Introducing the eigenvalue decomposition  

Key observation
The Fourier spectrum of the correlation matrix is symmetric and is the sum of outer 

products of its eigenvector's spectra. 

Implication:
If a filter removes a certain frequency from the spectra of K, this frequency is 

automatically removed from all its eigenvectors!

23/51

Perfect Separation Case

Consider the correlation 
spectra of the synthetic 

test case and the 
temporal evolution of 

its first POD mode

24/51
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Spectral Box (Low Frequency)

Using an almost ideal low 
pass filter (to be discussed) 
we extract a suitable large 
scale pattern (first spectral 

box)

Any higher frequency  
content removed from the 

correlation spectra 
disappears from the 

eigenvectors

25/51

Spectral Frame (High Frequency)

Obs: this filter is not 
working in the frequency 

domain 

Using an almost ideal high 
pass filter (to be discussed) 
we extract a suitable fine 

scale pattern (first spectral 
frame)

Any lower frequency  
content removed from the 

correlation spectra 
disappears from the 

eigenvectors

In what domain should the filter act?

26/51
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A Multiresolution view of K

Decompose the correlation 
matrix K into the contribution of 

different scales.

Each scale is equipped with its 
own POD, to be reassembled 

based on energy criteria

…
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Mendez et al, Exp Therm Fluid Sci 2017
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Fundamentals of 2D DWT
The correlation matrix at each scale is obtained as a linear combination of shifted basis
elements called scaling functions, placed at non overlapping locations. The possible shifts
depends on the scale. The approximation terms, for instance, read

Scale 0

Scaling functions
Scaling CoefficientsPossible shifts at scale l

For the last three scales, for instance, the scale functions are placed as follow
Scale 1 Scale 2

28/51

Fundamentals of 2D DWT
The reasoning for the fine scale part (detail) is analogous, expect that it contains three sets
of basis elements called wavelets, on for each kind of details:

The coefficients in both cases can be computed by standard projection of the matrix onto 
the set of bases of                                              scaling or wavelet functions.

The computation of the coefficients 
is the Discrete Wavelet Transform 
(DWT);

What are the scaling functions and the 
wavelet at each scale ?

The projection of the matrix 
onto the coefficients is the 
Inverse Discrete Wavelet 
Transform (DWT)

29/51
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2D Wavelets and Scaling Functions
At each scale, wavelet and scaling functions are synthesized by a mother function via the 
dilatation equation (Mallat, 1989):

Obs: By construction, each element in the scale 
(approximation or full detail) is symmetric and thus we 
keep the symmetry of the original matrix.

Exemplary scaling function

Each of the 2D basis element is constructed as outer product of a 1D element

Father Wavelet

Mother Wavelet(s)

30/51

Table of Contents
1. Motivation and Aims

2. Classification and Algebra of Decompositions

3. Synthetic Test Cases

4. The Multiscale Proper Orthogonal Decomposition

5. Numerical and Experimental Test Cases 

6. Conclusions

4.1 Fourier Spectra and Eigenvalue Spectra

4.2 Multiresolution via Discrete Wavelets

4.3 The Gram-Schmidt Re-Assembly



27-10-17

21

POD

Data

Correlation 
Matrix

Eigenvalue
Problem

Projection POD Modes

Mulstiscale POD

Data

Correlation 
Matrix

Multi-Resolution 
Analysis

Eigenvalue
ProblemS

ProjectionS

NO !

The Final Reassembly 31/51

Consider the MRA decomposition of the following symmetric matrix:

The pattern 
features high and 

low frequency 
content with a 

strong ‘1D’ 
frequency

Both frequencies 
appear in the dominant 

eigenvector

Incomplete Separation: Example 32/51
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The first spectral box (large scale) yields

The low pass filter 
removes any

higher frequency 
in the spectra

…and so on its 
eigenvectors

Incomplete Separation: Example 33/51

The relevant spectral frame (finer scale) yields

The high pass filter 
removes only 2D

frequencies low, but 
leaves the ‘single 
directional’ ones

As a result, the low 
frequency content is 
not removed from its 

eigevectors

This is in line with the 
wavelet basis used

Incomplete Separation: Example 34/51
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Spectral separation without 
Fourier problems

The Gram-Schmidt Process: Example 35/51

and so on…

Given the set of non-zero (or above tolerance) singular value at each scale

Assembly the matrix of multiscale temporal modes starting from the large scale ones

And re-orthonormalize to 
compute the temporal modes

Project and reorder for the spatial structures

The Final Step 36/51
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Solution Method (N. Kutz, 2013): Finite Differences with fast Poisson solver for the 
Laplacian and Runge Kutta (RK4) integration in time.

We consider the Vorticity-Streamline formulation of the Incompressible NS

Numerical Test Case 37/51

Mendez et al, 2017 
Multiscale Proper Orthogonal 

Decomposition (mPOD), ICNAAM
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Set of Coherent Sources 38/51

POD Results

The correlation patter shows the footprint 
of different scales and events:

1) Impulsive event

2) Periodic regular pattern

3) Localization of sources

4) Strong uncorrelation

The energy distribution has a gentle drop due to the 
complexity of the test case. Yet, the first 20 modes carries 
more than 90% of the energy

40/51
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POD Modes

Large Scale mPOD
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mPOD Scale 5

mPOD Scale 6
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mPOD Modes

The reordered mPOD modes 
achieve a much cleaner 

separation and tracking of the 
different sources

The energy convergence is 
comparable to the (optimal) one of 
standard POD

Experimental Test Case 46/51

Slider Frequency 0.1-2 Hz
Acquisition Freq: 3 kHz
Jet Speed: 20-40 m/s
Scaling Factor: 22 pixels/mm
Dx=0.36 𝑚𝑚ିଵ

24 m
m

Mendez et al, 2017 
Multiscale Modal Analysis of an Oscillating 

Impinging Gas Jet, Exp Therm Fluid Sci 
POD for Image Pre-Processing and Adaptive Masking 

Mendez et al, Exp Therm Fluid Sci, 80:181-192 
Mendez, M.A, Buchlin, J.-M., PIV Conference 2015
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POD Modes in Quasi Steady Test 47/51

Re = 3400 (34m/s) F=0.1 Hz

mPOD Modes in Quasi Steady Test 48/51

Re = 3400 (34m/s) F=0.1 Hz
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mPOD Modes Reconstruction 49/51

Two mechanisms at largely different scales are identified: the formation of a large scale 
vortex below the jet, which promotes a downward deflection and the flapping of the 
impinging jet due to entrainment unbalances

Large Scale Dynamics Fine Scale Dynamics

Large Scale Mode Evolution Fine Scale Versus Large Scale

Evolution of the Energy Density in the 
Fluidic oscillation:

versus the first large scale mode 

Scales Correlation 50/51
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mPOD Modes Dynamic cases 51/51

Re = 3400 (34m/s) F=2 Hz
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Conclusions

1.   Classification and Algebra of Decompositions

Energy Based: POD Frequency Based: DFT/DMD Mixed: SPOD

Dataset Information Something Else

1. Classification and Algebra of Decompositions

2. Testing on Synthetic Test Cases

Conclusions
Spectral Mixing
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